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Abstract. The Hamiltonian in the framework of eight-band effective-mass approximation of the zinc-blende
nanowires and nanorods in the presence of external homogeneous magnetic field is given in the cylindri-
cal coordinate. The electronic structure, optical properties, magnetic energy levels, and g factors of the
nanowires and nanorods are calculated. It is found that the electron states consist of many hole-state
components, due to the coupling of the conduction band and valence band. For the normal bands which
are monotone functions of |kz|, long nanorods can be modeled by the nanowires, the energy levels of the
nanorods approximately equal the values of the energy band E(kz) of the nanowires with the same radius
at a special kz, where kz is the wave vector in the wire direction. Due to the coupling of the states, some
of the hole energy bands of the nanowires have their highest points at kz �= 0. Especially, the highest hole
state of the InSb nanowires is not at the kz = 0 point. It is an indirect band gap. For these abnormal bands,
nanorods can not be modeled by the nanowires. The energy levels of the nanorods show an interesting
plait-like pattern. The linear polarization factor is zero, when the aspect ratio L/2R is smaller than 1, and
increases as the length increases. The gz and gx factors as functions of the kz, radius R and length L are
calculated for the wires and rods, respectively. For the wires, the gz of the electron ground state increases,
and the gz of the hole ground state decreases first, then increases with the kz increasing. For the rods, the
gz and gx of the electron ground state decrease as the R or the L increases. The gx of the hole ground
state decreases, the gz of the hole ground state increases with the L increasing. The variation of the gz of
the wires with the kz is in agreement with the variation of the gz of the rods with the L.

PACS. 73.21.La Quantum dots – 73.21.Hb Quantum wires – 75.75.+a Magnetic properties
of nanostructures – 78.67.Hc Quantum dots

1 Introduction

Narrow-gap semiconductors have been discussed for their
special characteristics. It gives rise to a lot of interesting
physical effects, as well as useful technological applica-
tions, such as infrared detectors and lasers.

For the wide use of applications, people pay more
and more attention to the narrow-gap semiconductors.
Regarded as the typical example, lots of investigations
on InAs and InSb nanowires and nanorods have been
reported in decades. InAs nanowires and whiskers were
grown by reaction of indium with GaAs [1]. InAs nanorods
were synthesized by colloidal chemistry techniques [2,3],
whose length-dependent optical properties [2] and tun-
nelling spectra [3] were measured. InSb nanowires and
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nanorods are also synthesized [4–6]. Luttinger-liquid-like
transport in long InSb nanowires were studied [6]. En-
ergy spectrum [7,8], electron and hole g factors [9,10],
linear polarized absorption and emission [11], spin-orbit
coupling effects[12], and one-dimensional excitons [13–15]
of these low-dimensional systems were investigated. Single
nanowire lasers were made out [16].

Motivated by the experimental progress, we study the
electronic structure, optical properties and g factors of
narrow-gap zinc-blende nanowires and nanorods in the
framework of the eight-band effective-mass approxima-
tion. It is found that the long nanorods can be modeled
by the nanowires, and the energy levels of the nanorods
equal the values of the energy band E(kz) of the nanowires
with the same radius at a special kz , where kz is the wave
vector in the wire direction. The remainder of this paper
is organized as follows. In Section 2 we give the form of
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the Hamiltonian. Our numerical results and discussions
are given in Section 3. Finally, we draw a brief conclusion
in Section 4.

2 Theory model and calculations

In the absence of external magnetic field, we represent
the eight-band effective-mass Hamiltonian in the Bloch
function bases |S〉 ↑, |11〉 ↑, |10〉 ↑, |1 − 1〉 ↑, |S〉 ↓, |11〉 ↓,
|10〉 ↓, |1 − 1〉 ↓ as

Heb =
(

Hint

Hint

)
+ Hso. (1)

Hso is the valence band spin-orbit coupling
Hamiltonian [17].

Hint is written as
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εg = 2m0Eg, and Eg is the bandgap of bulk material.
p0 =

√
2m0EP , and EP is the matrix element of Kane’s

theory.
As we have take into account the coupling of valence

band and conduction band, the Luttinger parameters L
and N should subtract the contribution from conduction
band [18], that is to say, L′ = L−Ep/Eg, N ′ = N−Ep/Eg.
M does not change, M ′ = M . The electron effective
mass should also subtract the contribution from valence
band [19],

α =
m0
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− Ep

3

[
2
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+
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]
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where mc is the electron effective mass and ∆so is the
spin-orbital splitting energy of the valence band.

We assume that the electrons and holes are confined
in a infinitely high potential barrier. In the spherical-
symmetry approximation, the transverse envelope func-
tion can be expanded with Bessel functions. The longitu-
dinal envelope function of the nanowires is the plane wave
eikzz , where kz is the continuum wave vector along the
z direction, which is the wire direction. Approximately, the
longitudinal envelope function of the nanorods is written
as eizmπ/L, m = 1, 2, 3, ..., simply replacing the continuum
wave vector kz by mπ/L [20]. We call this approximate
calculation of the nanorods the Wire Model. For more ex-
act calculation, we assume that the longitudinal envelope
function can be expanded with Sine functions,

|m〉 =

√
2
L

sin(m
π

L
z), m = 1, 2, 3, ... (5)

We call this calculation of the nanorods the Rod Model.
We should say that it is very hard to do the calculation in
the Rod Model for long nanorods, numerous basic func-
tions should be included as the pz linear terms in the
Haniltonian [Eq. (2)] couple different |m〉 states as follows

〈m′|pz|m〉 =
�

i
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, (6)

if m′ and m have different parities, else = 0. Actually, the
Wire Model ignores this coupling.

The total envelope function including the electron and
hole states is written as
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× eikzz (or eiπmz/Lor |m〉), (7)

where J = l + 1/2 is the total angular momentum, which
is a good quantum number in the absence of transversely
applied magnetic field. And Al,n is the normalization con-
stant,

Al,n =
1√

πRJl+1 (αl
n)

. (8)

αl
n = kl

nR is the nth zero point of the Bessel function
Jl(x), R is the radius of the cylinder.

For simplicity, we assume that the external magnetic
field is applied along the z direction or x direction, i.e.
parallel or perpendicular to the wire or rod. We can choose
the symmetric gauge when the magnetic field is applied
along the z direction. The vector potential is written as

A =
(
−1

2
Bzy,

1
2
Bzx, 0

)
. (9)
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Table 1. The parameters used in this paper.

mc L M N EP (eV) Eg (eV) ∆so (eV) εr

InAs 0.02226 54.2 3.87 55.6 21.6 0.418 0.38 15.15
InSb 0.0136 98.9 4.58 101.0 21.2 0.2352 0.81 16.8

When the magnetic field is applied along the x direction,
for simplicity, we choose the Landau gauge, and vector
potential is,

A = (0, 0, Bxy). (10)

In the presence of external magnetic field, the momentum
operator changes into p ⇒ p+eA. The whole Hamiltonian
can be written as

H = Heb + Ha
asym + HZeeman + Ha

mm, (11)

where

Ha
asym =

⎛
⎜⎝

0
Hasym

0
Hasym

⎞
⎟⎠ , (12)

and Hasym is given in details before [21]. HZeeman is the
spin-Zeeman-splitting Hamiltonian, and Ha

mm is the re-
mainder part, which is named as magnetic-momentum
Hamiltonian. Ha

mm has the form

Ha
mm =

(
Hmm 0

0 Hmm

)
, (13)

where Hmm is a 4 × 4 matrix, which is given in Ap-
pendix A.

We also calculate the linear polarization factor of the
short rods. We assume that the light wave propagates
along the y direction. The linear polarization factor is
given by

P = (Iz − Ix)/(Iz + Ix). (14)

Iz and Ix are the intensities of z and x polarized transi-
tions, which can be calculated similarly to the quantum
ellipsoid case.

3 Results and discussion

In this section, we calculate the electronic structure, op-
tical properties and g factors of narrow-gap zinc-blende
nanowires and nanorods. The parameters [22] used in this
paper are listed in Table 1. However, these parameters
measured in the bulk material include some contribu-
tions, say, nonlocal character of the self-consistent poten-
tial, that are absent in narrow-gap nanostructures [17].
Therefore, using these parameters requires taking special
precautions. The nonlocal contributions are

∆L = −21δnl, ∆M = 3δnl, ∆N = −24δnl, (15)

∆α = −10δnl, δnl =
2

15πεrEg

√
EBEp

3
, (16)

where EB = 27.211 eV and εr is the dielectric constant
given in Table 1.

Fig. 1. Energy bands E(kz) of the InAs nanowires with radius
of R = 2 nm. (a) Electron energy bands. (b) Hole energy bands.

3.1 Electronic structure

The energy bands E(kz) of the InAs nanowires with radius
of R = 2 nm are shown in Figure 1. The symbol of each
energy band represents the main components of it’s wave
function. For example, S1/2 means that the state is a hole
state and consists mainly of the J = 1/2, l = 0 and n = 1
state of the effective-mass envelope function [Eq. (7)] mul-
tiplied with the Bloch state and the spin state, and Se

1/2 is
a electron state. From Figure 1a we see that the electron
energy bands are simple parabolic bands with the order
S, P , and D. The P and D energy bands split due to the
coupling of the conduction band and valence band. The
energy of the Se

1/2 energy band is denoted as Es, which
will be used later. Because J is a good quantum number,
only the states with the same J are coupled. Due to the
off-diagonal p±-linear terms S∗ and S in the Hamiltonian
[Eq. (2)], the hole states with ∆l = ±1 and ∆J = 0 are
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Fig. 2. Electron and hole energy levels of the InAs nanorods
with R = 2 nm as functions of the length L calculated by the
Wire Model. (a) Electron levels. (b) hole levels.

coupled, for example the state P1/2 are coupled with the
states S1/2 and S1/2 + D1/2, and the state P3/2 are cou-
pled with the states S3/2 and 2S3/2 + D3/2, as shown in
Figure 1b. The hole energy bands show a complex relation
with kz due to the coupling of the bands. The hole ground
state is a S state.

The electron and hole energy levels of the InAs
nanorods with R = 2 nm as functions of the length L are
shown in Figures 2 and 3, calculated by the Wire Model
and Rod Model respectively. The energy levels in Figures 2
and 3 are all two-fold degenerated. The Wire Model re-
sults are simply read from the corresponding energy bands
in Figure 1 at the wave vector kz = mπ/L, m = 1, 2, 3.
The symbol of each energy level in Figure 3 represents
the main components of it’s wave function. For example,
(2, 0, 1)S ↑ means that the state consists mainly of the
m = 2, l = 0, n = 1 state of the effective-mass envelope
function [Eq. (7)] multiplied with the S Bloch state of the
conduction-band bottom and the spin-up state. We see
that the energy levels decrease with the length increas-
ing. The electron states [see Fig. 3a] consist of many hole-
state components, due to the coupling of the conduction
band and valence band. We see that the level symbols in
Figures 3a and 3b are similar respectively, only the m-
numbers change. Actually, the rest part of the symbols
represent the main components of the states of the cor-
responding energy bands in Figure 1, and the m-numbers
are similar to those in Figure 2. Moreover the energy lev-
els in Figure 2 are in agreement with those in Figure 3. So
the Wire Model is in agreement with the Rod Model, i.e.
these energy levels can be modelled by the Wire Model.

The energy bands E(kz) of the InSb nanowires are
shown in Figures 4 and 5. We see that Figure 4b is sim-
ilar to Figure 1b, both the highest hole states are at
kz = 0 point. Actually, all the electron bands and hole

Fig. 3. Electron and hole energy levels of the InAs nanorods
with R = 2 nm as functions of the length L calculated by the
Rod Model. (a) Electron levels. (b) hole levels.

Fig. 4. Energy bands E(kz) of the InSb nanowires.
(a) R = 2 nm, electron bands. (b) R = 2 nm, hole bands.
(c) R = 4 nm, electron bands. (d) R = 4 nm, hole bands.
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Fig. 5. Energy bands E(kz) of the InSb nanowires.
(a) R = 8 nm, electron bands. (b) R = 8 nm, hole bands.
(c) R = 64 nm, electron bands. (d) R = 64 nm, hole bands.

bands in Figures 1, 4 and 5 are similar respectively, little
change happens. But this change is important. It is no-
ticed that the highest hole states in Figures 4d, 5b and 5d
are not at kz = 0 point, while at kz = 0.1021 nm−1,
kz = 0.0785 nm−1 and kz = 0.0044 nm−1 points, respec-
tively. That means that they have indirect band gaps. The
the R = 8 nm case in Figure 5b is the most obviously, the
P1/2 band couple with the S1/2 band strongly leading to
the hump of the latter band. Actually, the coupling of
the P1/2 band and S1/2 band is mainly introduced by the
off-diagonal p±-linear terms S∗ and S in the Hamiltonian
[Eq. (2)]. Because the S∗ and S terms are also pz-linear
terms, the states are coupled more strongly when the kz

(=pz/�) is larger. This causes the S1/2 energy band in-
creases with the kz increasing when kz is small. When kz

is large, the S1/2 energy band decreases with the kz in-
creasing, due to the pz-quadratic terms [see Eq. (2)]. The
S3/2 bands in Figures 4 and 5 and the S3/2, S1/2 + D1/2,
P5/2 + F5/2 energy bands in Figure 1 vary in the similar
way, due to the similar reason to the S1/2 energy band
in Figures 4d and 5, and their highest points are also not
the kz = 0 point. But indirect band gap only happens in
certain condition. The indirect band gap is mainly due to
the coupling of the S1/2 and P1/2 bands. When the ra-
dius is very small, the S1/2 and P1/2 bands are too far
away, the coupling is so small that it can not bring an in-
direct band gap, as shown in Figure 4b. When the radius
is too large, the S1/2 and P1/2 bands are close, but the
coupling p±-linear (i.e. 1

R -linear) terms S∗ and S are so

Fig. 6. Electron and hole energy levels of the InSb nanorods
with radius of R = 8 nm as functions of the length L calculated
by the Wire Model. (a) Electron levels. (b) Hole levels.

small that they can not bring an indirect band gap. For
InSb case, when the radius is approximately in the range
of [4, 64] nm, the coupling of the S1/2 and P1/2 bands is
strong enough to bring the indirect band gaps. When R
is as large as that the nanowires can be treated as bulk
materials, the band gap should be direct. For InAs case,
the coupling is always not strong enough. The variation of
the coupling strength can also be seen from the electron
bands in Figures 4a, 4c, 5a and 5c. The splitting of the
electron P bands are due to their coupling with the hole S
and D bands. When the radius is very small, the coupling
bands are too far away. When the radius is very large,
the coupling is too small. When R is as large as that the
nanowires can be treated as bulk materials, there should
be no splitting. So only in the moderate radius case, the
splitting can be seen explicitly, as shown in Figures 4c
and 5a.

The electron and hole energy levels of the InSb
nanorods with R = 8 nm as functions of the length L are
shown in Figures 6 and 7, calculated by the Wire Model
and Rod Model respectively. The energy levels in Figures 6
and 7 are all two-fold degenerated. The Wire Model results
are simply read from the corresponding energy bands in
Figures 5a and 5b at the wave vector kz = mπ/L, respec-
tively. We see that the energy levels in Figure 6a are in
agreement with those in Figure 7a, i.e. these energy levels
can be modelled by the Wire Model. So we label the levels
in Figure 7a as Se

1/2m, m = 1, 2, 3. We only show the low-
est three levels because this case is very simple. While the
hole case is complicated as shown in Figures 6b and 7b.
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Fig. 7. Electron and hole energy levels of the InSb nanorods
with radius of R = 8 nm as functions of the length L calculated
by the Rod Model. (a) Electron levels. (b) Hole levels.

First of all, Figure 6b is not in agreement with Figure 7b,
i.e. these levels can not be modelled by the Wire Model
(but we label the levels by the similar symbols in Figure 7a
approximately). The reason is that there are many cross-
ing points of different m levels in Figure 6b. These levels
do not couple with each other because the Wire Model
ignores their couplings. In Rod Model, the m levels with
different parities couple with each other, leading to the
interesting plait-like pattern. However, the Wire Model
results in Figure 6b also give some hints of the real case.
For example, for a given L, the highest hole level is the
level (labelled by m) whose corresponding wave vector is
at the lowest point in Figure 5b, saying

m
π

L
= 0.0785. (17)

As we see, when L = 50 nm, m ≈ 1, the highest level
in Figure 6b is the m = 1 level, which hints the high-
est states in Figure 7b are mainly m = 1 states. When
L = 300 nm, m ≈ 7, the highest level in Figure 6b is the
m = 7 level, which in agreement with that the highest
states in Figure 7b are mainly m = 7 states. In Figure 6b
the m = 1 level decreases with increasing L, and in Fig-
ure 7b the m = 1 states move down as L increases, which
also happens for other m states.

Actually the other bands in Figures 1, 4 and 5, which
are not monotone functions of |kz |, for example, the S3/2

bands in Figures 4 and 5 and the S3/2, S1/2 + D1/2,
P5/2 +F5/2 bands in Figure 1, can not be modelled by the
Wire Model due to the similar reason. Only the normal
bands which are monotone functions of |kz|, for example,
electron bands and S1/2 bands in Figures 1b and 4b, can
be modelled by the Wire Model.

3.2 Linear polarization of InAs rods

The linear polarization factor of the InAs nanorods with
radius of R = 2 nm at temperature of T = 300 K as a func-
tion of the length L is shown in Figure 8a. We see that
as the L increases, the linear polarization factor changes
from −1 to 0.8. When L = 3.54 nm, and the correspond-
ing aspect ratio L/2R = 0.885 < 1, the polarization factor
is zero. The normalized intensities of the InAs nanorods
with R = 2 nm at T = 300 K as functions of the L are
shown in Figure 8b. We see that as the L increases, the
normalized intensity Ix decreases, and the normalized in-
tensity Iz increases at first, resulting in the increase of the
polarization factor, then they both decrease slowly due to
the decrease of the overlap of the electron and hole wave
functions when L is sufficiently large. The linear polariza-
tion factor of the InSb nanorods with radius of R = 2 nm
at temperature of T = 300 K as a function of the length L
is shown in Figure 8c. We see that the polarization factor
is a little smaller than the InAs case, and is zero when
L/2R = 0.8475.

3.3 Magnetic energy levels and g factors

The hole magnetic energy levels and the gz factors of the
InAs nanowires with R = 2 nm in the magnetic field B =
20 Tesla as functions of the kz are shown in Figures 9a
and 9b, respectively. The g factor is defined as,

∆E = gµBB, (18)

where ∆E is the splitting energy. From Figure 9b we see
that the gz factor of the hole state S1/2 decreases from 1
at kz = 0 to 0 at kz ≈ 0.5 π/R, then increases when the
kz increases continuously. The electron magnetic energy
levels and the gz factors of the nanowires with R = 2 nm
as functions of the kz are shown in Figures 9c and 9d,
respectively. From Figure 9d we see that the gz factor of
the electron ground state increases from 0.93 at kz = 0 as
the kz increases. From the variation of the gz factor of the
nanowires with the kz we can obtain the gz factor of the
nanorods as functions of the L.

By expanding the longitudinal function with the Sine
functions [Eq. (5)] we calculate the magnetic energy lev-
els in the external magnetic field applied along the z and
x directions, i.e. parallel and perpendicular to the rod.
The g factors of the electron ground state of the InAs
nanorods with L = 2 nm as functions of the R are shown
in Figure 10a. We see that the g factors decrease as the
radius increases. The gz factor decreases more than the gx

factor. Actually, as the radius increases, two dimensions
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Fig. 8. (a) The linear polarization factor of the InAs nanorods with radius of R = 2 nm at temperature of T = 300 K as
a function of the length L calculated by the Rod Model. (b) Normalized intensities of the InAs nanorods with R = 2 nm at
T = 300 K as functions of the L. (c) The linear polarization factor of the InSb nanorods with radius of R = 2 nm at temperature
of T = 300 K as a function of the length L calculated by the Rod Model.

Fig. 9. (a) The hole magnetic energy levels and (b) the gz fac-
tors, and (c) the electron magnetic energy levels and (d) the
gz factors of the InAs nanowires with R = 2 nm in the mag-
netic field B = 20 Tesla as functions of the kz. The electron
magnetic energy levels subtract the energy Es which is shown
in Figure 1a.

perpendicular to the z direction relax, one dimension per-
pendicular to the x direction relaxes. We assume that the
dimensions perpendicular to the direction of the magnetic
field affect the g factors more than the other dimension. In
this case, the increasing radius affects the gz factor more
than gx.

The g factors of the electron ground state of the InAs
nanorods with R = 2 nm as functions of the L calculated
by the Rod Model are shown in Figure 10b. From Fig-
ure 10b we see that the g factors decrease as the length L
increases, and the gx factor decreases more than the gz

factor. In this case the increasing length increases space
in the z direction, so affects the gx factor more than gz.
The gz factor decreases from 1.0 for L = 10 nm to 0.93 for
L = 80 nm, which is in agreement with the gz factor of
the nanowires with R = 2 nm [Fig. 9d] for the kz chang-
ing from 0.2π/R to 0.025π/R, i.e. the Rod Model accords
with the Wire Model in this case.

The g factors of the hole ground state of the InAs
nanorods with R = 2 nm as functions of the L calculated
by the Rod Model are shown in Figure 10c. We see that the
gx factor decreases as the length increases, which is similar
to the electron g factors (see Figs. 10a and 10b). It is no-
ticed that the gz factor increases from 0.8 for L = 10 nm to
1.05 for L = 80 nm, which is in agreement with the gz fac-
tor of the hole state S1/2 of the nanowires with R = 2 nm
[Fig. 9b] for the kz changing from 0.2π/R to 0.025π/R, i.e.
the Wire Model works for this S1/2 band (see Fig. 1b).

The g factors of InSb nanowires (nanorods) with radius
of R = 2 nm as functions of the kz (L) are shown in
Figure 11. The rod case is calculated in the Rod Model.
We see that the g factors are very similar to the InAs case.
As the lowest hole band in Figure 4b is similar to that in
Figure 1b for which the Wire Model works, we can also
do the comparison between the g factors of nanowires and
nanorods, similarly to Figures 9 and 10.
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Fig. 10. The g factors of the electron/hole ground state of the InAs nanorods calculated by the Rod Model. (a) L = 2 nm,
electron g factors as functions of the R. (b) R = 2 nm, electron g factors as functions of the L. (c) R = 2 nm, hole g factors as
functions of the L.

Fig. 11. The g factors of InSb nanowires (nanorods) with
radius of R = 2 nm as functions of the kz (L). The rod case is
calculated in the Rod Model. (a) Nanowires, electron g factor.
(b) Nanowires, hole g factors. (c) Nanorods, electron g factor.
(d) Nanorods, hole g factor.

4 Conclusions

The Hamiltonian in the framework of eight-band effective-
mass approximation of the zinc-blende nanowires and
nanorods in the presence of external homogeneous
magnetic field is given in the cylindrical coordinate. The
electronic structure, optical properties, magnetic energy

levels, and g factors of nanowires and nanorods are
calculated. The electron states consist of many hole-state
components, due to the coupling of conduction band and
valence band. For the normal bands the Wire Model
works, the energy levels of the nanorods approximately
equal the values of the energy band E(kz) of the nanowires
with the same radius at a special kz . Because the hole
states with ∆l = ±1 and ∆J = 0 are coupled by the S∗
and S terms in the Hamiltonian [Eq. (2)], some of the hole
energy bands of the nanowires have their highest points
at kz �= 0. Especially, the highest hole state of the InSb
nanowires is not at the kz = 0 point. It is an indirect
band gap. And the indirect band gap is the most obvious
when the wire is moderately thicker. For these abnormal
bands, the Wire Model is wrong. The energy levels of the
nanorods show an interesting plait-like pattern. The linear
polarization factor is zero, when the aspect ratio L/2R is
smaller than 1, and increases as the length increases. The
gz and gx factors as functions of the kz, radius R and
length L are calculated for wires and rods, respectively.
For the wires, the gz factor of the electron ground state
increases, and the gz of the hole ground state decreases
first, then increases with the kz increasing. For the rods,
the gz and gx factors of the electron ground state decrease
as the R or the L increases. The gx of the hole ground state
decreases, the gz of the hole ground state increases with
the L increasing. The variation of the gz factor of wires
with the kz is in agreement with the variation of the gz of
rods with the L.
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(A.20)

Appendix A

In this appendix, we give the form of Hmm in equa-
tion (13). When the magnetic field is applied along the
z direction (B = Bz), Hmm is written as

see equation (A.19) above

When the magnetic field is applied along the x direction
(B = Bx), Hmm is written as

see equation (A.20) above.
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